Connect with us


John Von Neumann

Biography of John Von Neumann

John Von Neumann Biography

Johann von Neumann, better known as John von Neumann, was a twentieth-century Hungarian mathematician who made great contributions to quantum physics, functional analysis, mathematical set theory, communication sciences, economics, numerical analysis, cybernetics, the hydrodynamics of expressions and statistics.

Neumann was born on December 28, 1903, in Budapest. His family came from a wealthy family of bankers, even though their ancestors came from Russia without much money. His father received the title of chivalry from Joseph I of Habsburg in order to support his political purposes.

Since he was a child it was clear that John von Neumann had many aptitudes for mathematics, a prodigious memory and a great ability for languages. Thanks to the latter, his parents sought to complement the education he received at the Fasori Gimnazium Lutheran school in Budapest with language classes taught by private teachers.

Later he went to study mathematics and chemistry at the universities of Budapest and Berlin, as well as chemical engineering at the Federal Institute of Technology in Zurich, Switzerland. In one of his walkings around the campus of the University of Göttingen, he would meet met the German mathematician, David Hilbert. Knowing him was of great importance because his work helped him to develop the theory of the demonstration and allowed him to improve the foundation of Zermelo’s set theory.

In 1921, the Pázmány Péter University in Budapest awarded him the doctorate in mathematics after he presented a thesis on ordinal numbers. Six years later, when he was only twenty-five years old, he became the youngest professor at the University of Berlin and Hamburg, where continued working until 1930.

In 1928, John von Neumann devoted himself to study strategy games and from this, he opened the door to the development of statistical mathematics. Also, he worked in the automation of mathematics and contributed to the development of computational logic.

Sometime later, after his father passed away, he moved to America. When he moved to the United States, he changed his name to English, so that he went from being Johann to being John; although he kept his surname. Once there, Neumann was working at Princeton University for more than 25 years and obtained one of five open positions to work at the Institute for Advanced Study, that is, the Institute for Advanced Studies.

Besides working as a teacher, he participated in the development of two of the first computers: ENIAC (Electronic Numerical Integrator And Computer) and EDVAC (Electronic Discrete Variable Automatic Computer). This is due to their interest in creating automation machines that would allow the automation of complex systems.

In addition, he was the tutor of the doctoral thesis of Alan Turing, who would be considered one of the fathers of computer science. And this was not the only thing, also contributed to the study of algorithms with the invention of the mergesort algorithm.

John von Neumann worked with R.D. Richtmyer in an algorithm of artificial viscosity that would allow understanding shock waves, and between 1944 and 1946 he worked for the American military-industrial complex in the development of a report that presented the opportunities represented by the development of computers. Likewise, he participated in the conception of a memory capable of storing a program with the instructions for the resolution of a problem.

He was constantly called to work for the CIA and the Army of the United States. He became the chairman of the Committee for missiles and joined the atomic energy commission. For all the above, Neumann was considered the scientist with the greatest political power in all United States of America.

He participated in the development of a good number of submarine missiles with atomic heads with which nations threatened each other during the cold war. In 1943, he was asked to participate in the manufacture of atomic bombs, hydrogen bombs, and ballistic missiles. One of his most cited findings in this field was that “large-scale bombs are more devastating than if they were detonated before touching the ground; participation in projects for the design of contact explosives.”

About his personal life, we can say that he was always known as a womanizer and married twice. With his first wife, he had a daughter who ended up becoming a professor of international trade and public policy at the University of Michigan. His second wife was a woman he met on one of his trips to Budapest.

In 1955, he became a member of the American government’s atomic energy commission. That same year he was diagnosed with pancreatic cancer. Neumann died on February 8, 1957, surrounded by soldiers because they had him under surveillance to prevent him from revealing state secrets because of the medication.



Friedlieb Ferdinand Runge

The original uploader was Dr. Manuel at German Wikipedia. / Public domain

Friedlieb Ferdinand Runge Biography

Friedlieb Ferdinand Runge (February 8, 1794 – March 25, 1867) was born in Hamburg, Germany. Chemist and pharmacist, famous for discovering caffeine in 1820, after being encouraged to study coffee beans by renowned German scientist Johann Wolfgang Goethe.

Runge is considered one of the most prominent scientists of the 19th century. However, he was little appreciated at the time. Among his most outstanding findings are: atropine, aniline, phenol, quinine, pyrrole, and tar distilled dyes, as well as chromatography. Throughout his academic career he served as a professor at the universities of Berlin and Wroclaw, subsequently worked for a pharmaceutical company in which he sought financial support to make his discoveries profitable. However, his efforts were ignored.

Studies and beginnings

He was born into a humble family that lived in Billwerder (Hamburg). His father was a Lutheran pastor. He studied at the primary school located in Schiffbeck, after a few years he began to be interested in science, a passion he has cultivated since then. After carrying out his basic academic training, he chose as a profession the pharmaceutical company, an area in which she quickly excelled, thus earning her own livelihood since she was young. At the beginning of the 1810s, he observed how a drop of belladonna increased the diameter of the pupil of the eye in a cat, thus discovering the mydriatic effect of the plant. In 1816, he entered the University of Berlin, where he studied medicine, two years later he continued his training in Göttingen, the city in which he carried out his practices in chemistry.


At the end of his formative period in Göttingen, he moved to Jena, where shortly thereafter he obtained his Ph.D. in Physics, after presenting an essay in which he delved into the poisoning with Belan and Belladonna. At that time he had as a Professor of Chemistry Johann Wolfgang Döbereiner, a renowned German chemist who invited Johann Wolfgang Goethe to observe Runge’s discovery about the effect of belladonna on the pupil, for this the young scientist presented himself with a cat, which had pupils of different diameter, impressed by his discovery, Goethe gave him a box of coffee beans and asked him to analyze the chemical composition of coffee, research that resulted in the discovery of caffeine in 1820.

Before his great discovery, he returned to Berlin, where he began to work as a university professor while continuing to work as a pharmacist. During this period, he lived with the famous physicist Johann Christian Poggendorf who was his school partner in Schiffbeck. Together, they turned their home into a laboratory, where they conducted numerous experiments. At the beginning of the 1820s, he carried out various studies related to indigo dye and its chemical composition (salts and metal oxides), information that was part of his doctoral thesis. He later published Recent phytochemical discoveries, a work in which he delved into this area of ​​science, seeking to establish scientific phytochemistry.

During his stay in Berlin, he began teaching about plants and technical chemistry. In 1823, he traveled to Paris to continue studying, later moved to Wroclaw for a short time, then visited Switzerland, France, Germany, Holland, and England. After traveling through Europe, Runge settled in Wroclaw, a city where he served as an associate professor at the Faculty of Philosophy at the University of Wroclaw, without receiving a fixed salary. In the course of these years he gave various conferences and focused on his research, with the goal of carrying out chemical studies that had a practical benefit; a short time later he left his job at the university to devote himself fully to research. In 1832 he was hired to direct the technical management of a chemical factory sponsored by the Prussian government, located in Oranienburg.

While working at the factory, he discovered the aniline and phenol by distilling the coal tar, aware of the entrepreneurial potential of this discovery, he sought the support of the company. However, the factory director rejected the proposals proposed by Runge. For this discovery, he was exalted at the Industrial Congress in London and was later awarded in Berlin. For this same period, he investigated the intensities of the colors through the filter paper. In 1852 he was fired after being accused of working for a short time, an accusation that was linked to the academic activity of the scientist, who at this time focused on his studies and published about seven books. Runge lived for a short time of the pension of the company, which stopped arriving after the death of the owner.

The last years of his life faced serious financial problems, falling into oblivion. However, he continued to carry out research on practical chemistry, produced artificial fertilizers and wrote several books, including maintenance letters, a book in which he gave advice on the domestic environment, such as preparations, recipes, and Tricks to eliminate stains and odors. After a long academic career the scientist died on March 25, 1867, in Oranienburg, was buried in the municipal cemetery.

Although his studies and approaches were little appreciated in his time, currently Runge, he is considered one of the most relevant scientists of the nineteenth century.

Friedlieb Ferdinand Runge doodle

Google honored the scientist on the 225th anniversary of his birth, becoming the center of the Doodle on February 8th. In the image, the scientist is seen surrounded by his discoveries such as caffeine and the mydriatic effect of belladonna on the cat’s eyes.

Continue Reading


Anders Celsius

Anders Celsius

Anders Celsius biography

Anders Celsius (November 27, 1701 – April 25, 1744) was born in Uppsala, Sweden. Physicist and astronomer, creator of the centesimal scale of the thermometer known as Grade Celsius (° C), which replaced the scale proposed by the German scientist, Daniel Gabriel Fahrenheit in 1724. Celsius, like many other scientists of his day, had a careful education that covered various fields. However, he focused fully on physics and astronomy, areas in which he excelled being considered one of the most prominent scientists of the 18th century. Throughout his academic career, he served as a professor of astronomy at the University of Uppsala. He was also one of the supervisors of the construction of the Uppsala Observatory, which he directed for several years.

He was born in a family belonging to the academic circle of the country. His father was Nils Celsius, an outstanding astronomer, a descendant of Magnus Celsius, a renowned mathematician and astronomer, who deciphered the runes of Staveless. His uncle Olof Celsius was the creator of a botanical school in Uppsala and a professor famous for his knowledge about mosses. On the maternal side, Celsius is related to Anders Spole, an astronomer and mathematician who served as a professor at Upsala University.


After completing his studies he began to practice as a professor at the University of Uppsala (1730-1744) for 14 years. During this time, he conducted various investigations related to the field of astronomy. In the early years of the 1730s, he undertook a trip through Europe in which he visited the most outstanding astronomical observatories of the time, arriving to work with renowned astronomers. In 1733, he published a compilation of 316 observations of northern lights, in which he speculated about their relationship with magnetism.

Between 1736 and 1737 he was part of the group of researchers that accompanied the French astronomer Pierre Louis Maupertuis, on his journey through the northern region of Sweden where he sought to measure the length of the meridian near the pole, to compare it with the measurement made in Peru near to Ecuador. This research was known as the Lapland Expedition, which sought to demonstrate that Newton’s predictions about the flattening of the earth at the poles were correct, a conclusion they reached after the measurements. The calculations and conclusions of the expedition were included in La Figure de la Terre, a book published by Maupertuis in 1738.

For his participation in the expedition, Celsius was rewarded as an annual pension of 1,000 pounds, economic income that allowed him to invest in the construction of the Uppsala Observatory, which was one of the most modern of his time, after the opening he was appointed director of the observatory (1740). During the following years, he made various geographical measures used in the Swedish map. In the 1740s he carried out the studies in relation to the temperature scale by which he is known.

By 1742, he proposed to the Swedish academy a new way of measuring the temperature based on two established points: 0 indicated the boiling point of water and 100 represented the degree of freezing; which meant that as the heat increased the temperature dropped. This proposal would replace the scale created by Daniel Gabriel Fahrenheit in 1724, known as Fahrenheit Grade (° F), which ranged from 32 to 212 degrees.

Explained the operation of the scale, Celsius, created the centesimal scale that ranged from 0 to 100 degrees and invented the mercury thermometer. After three years, the scale was reversed by the Swedish scientist Karl von Linné, a modification with which it has been used since then. The scale of the Swedish scientist was called in the first years, Swedish thermometer, a term used by the scientific community of the time, however, since the 19th century it began to be called Celsius thermometer, in homage to its creator, it has also been known as Grade Celsius (° C). The following century this was replaced by the Kelvin scale (Kelvin K Grade), created in 1848 by William Thomson (Lord Kelvin).

The contributions of Celsius in the field of science are not reduced to scale, he was also the first scientist to raise the relationship between the phenomenon of the auroras and magnetism, also made numerous observations of this phenomenon that allowed his study years late. Another contribution of this scientist in the astronomical field was his studies on eclipses and stars, which included a detailed catalog of 300 stars and their system. Two years after the scale was created, the Swedish scientist contracted tuberculosis, a disease that deteriorated his health in a short time, passing away on April 25th, 1744, at the age of 43.

Continue Reading


Willem Einthoven

Willem Einthoven Biography

Willem Einthoven Biography

Willem Einthoven (May 21, 1860 – September 28, 1927) Physiologist and physician. Nobel Prize in Medicine in 1924. He was born in Semarang, Indonesia. He is well known for his contributions to the development of the electrocardiograph and its clinical application. His father died when they lived in Java, so Willem moved to the University of Utrecht to study medicine.

After finishing his studies he obtained the position of professor at the University of Leiden to deal with the positions of physiology and histology. He took the opportunity to advance an important work in the field of research. He quickly showed himself as a reputable scientist, participated in numerous international scientific forums and the best thing is that by managing several languages ​​he could communicate his ideas faithfully without the need for translators.

For several years he experimented with the rope galvanometer and its utility for the registration of cardiac potentials, and the results obtained were published in an article in the year 1901. Five years later, he masterfully described the clinical applications of the electrocardiogram in Telecardiogramme (1906). After that, he published another article that laid the foundations for the development of this important tool in cardiology analysis. His investigative work was carried out simultaneously with his work as a professor.

Thanks to his work, the galvanometer was used to measure the differences in electrical potential during systolic and diastolic heart contractions and reproduce them graphically. This procedure is known as an electrocardiogram.

Later, he was interested in analyzing how healthy hearts worked and then defining a reference frame, through which attention was paid to the deviations caused by the disease. To sum up, he revolutionized the study, diagnosis, and treatment of cardiac pathologies. In his honor, the lunar crater Einthoven bears his name.


Continue Reading


Lucy Wills

Lucy Wills Biography

Lucy Wills Biography

Lucy Wills (May 10, 1888 – 1964) hematologist and botany. She was born in Sutton Coldfield, United Kingdom. Her family enjoyed a good social and economic position. Therefore, she was able to study at Cheltenham Ladies ’College, an educational institute that offered high educational standards in teaching. Then, she studied Botany and Geology in 1911 but did not receive a Cambridge graduate degree until 1928, when Cambridge began granting degrees to women.

By that time, Wills had admirably managed to graduate as a doctor at the London Royal Free Hospital School of Medicine for Women. From the beginning, he knew that he would devote her knowledge to research and teaching in the Department of Pathological Chemistry of the same center in London. For the year 1928 Margaret Balfour contacted her. For several years she served as chief of pathology until her retirement in 1947.

After her retirement, she worked in South Africa and Fiji studying the effects of nutrition on health. During the last ten years of her life, she was a member of the local government for Chelsea. She started working on macrocytic anemia of pregnancy that primarily affects pregnant women in the tropics, with inadequate diets, this work was developed in several areas of India.

This woman is owed several contributions, such as discovering a nutritional factor in yeast that prevents and cures this disorder: the Wills factor or folate, the natural form of folic acid. In that sense, in the year 1930, she showed that anemia could be reversed with brewer’s yeast, which contains folate.

As part of a recognition of her work and the advancement of medicine, on May 10, 2019, the 131st anniversary of her birth, the Google search engine commemorated Wills with a Doodle available for North America, parts of South America and Europe, Israel, India, and New Zealand. Her knowledge changed the face of prenatal preventive care for women around the world.



  • Studies on blood and urinary chemistry during pregnancy: blood sugar curves.
  • Studies in pernicious anemia of pregnancy (1930). This research has 4 parts.
  • Treatment of “pernicious anemia” of pregnancy and “tropical anemia” with special reference to yeast extract as a healing agent.
  • The nature of the hemopoietic factor in Marmite.
  • A new factor in the production and cure of certain macrocytic anemias.
  • Tropical macrocytic anemia: its relationship with pernicious anemia.
Continue Reading


Claude Bernard

Claude Bernard Biography

Claude Bernard Biography

Claude Bernard (July 12, 1813 – February 10, 1878) physiologist. He was born in Saint-Julien, France. The top representative of the French physiology of the 19th century. His life was dedicated to studying the nervous regulation of salivary secretion, pancreatic digestion, and glycogenic liver function. He is admired for having discovered vasomotor innervation and creating the concept of internal secretion. His contributions to experimental pharmacology are also salvageable.

Bernard at nineteen entered as a clerk in a pharmacy in Vaise, a suburb of Lyon. He liked literature so he wrote a drama entitled Arthur de Bretagne, he went to Paris; but then he started studying medicine, leaving literature aside. At first, he had the guidance of the physiologist François Magendie, who was a trainer, and soon gave proof of his genius. In 1843 he could already demonstrate the glycogenic function of the liver. He was an assistant to Magendie and professor of physiology at Collège de France. In the year of 1853, he obtained the title of doctor of science with the thesis Investigations about a new function of the liver, considered as a producing organ of sugary matter.

The following year he was a professor of experimental medicine at the Collège de France. Years later, and thanks to the knowledge acquired, he wrote Introduction to the study of experimental medicine (1865) allowed him to be part of the French Academy; this year he was entrusted with the chair of general physiology of the Sorbonne Natural History Museum, and in 1869 he was appointed member of the Imperial Senate of Napoleon III. In 1870 his intellectual vitality was affected by a kidney disease contracted because of the cold and humidity of his laboratory.

This French defended the determinism linked to neo-vitalism. He also studied, in addition to hepatic glycogenesis, the sympathetic nervous system and poisons. Among his works are Leçon sur la physiologie expérimentale appliquée a la médecine (1856), Les propriétés des tissus vivants (1866) and Leçon Sur Les phenomènes de la vie (1878).

In broad strokes, his works advocated naturalistic principles and thus generated a great influence that he exerted on the naturalist movement, mainly in Zola. Bernard establishes the rules of medicine that is true science and method, must have a solid foundation. For hi medicine must be like physics and chemistry, a science that undergoes an experimental method. But experience is not proven simply by the facts, without being guided by a precise conviction; rather, it must be rigorous and complete experimentation. So, the philosophical and theological yoke is excluded, admitting a personal scientific authority.

Thus, Bernard says, the hypotheses will encourage discoveries and experimentation serves as a guide. Émile Zola developed in his thinking of naturalist novelist Bernard’s famous scientific premises; his essay The experimental novel represents the attempt to apply the principles of physiology to a conception of art. Unfortunately, he died on February 10, 1878. He is remembered for being one of the referents of experimental physiology of the nineteenth century, and, at the same time, one of the most illustrious thinkers of the time in Europe. The medicine had many advances in an anomaly that affects the sympathetic nerves of the face, it was called Claude Bernard-Horner syndrome.

Similarly, he contributed to the development of therapeutics, diabetes, indications of bleeding, detoxification by carbon monoxide through mechanical ventilation, the treatment of anemia with iron lactate, the decrease in body temperature through physical means, treatment of alcohol intoxication, morphine applications, the effects of carbon dioxide, intravenous administration of physiological serum, cardiopulmonary resuscitation techniques, among others.

Continue Reading



Most Popular