Science

The history of biology

Advertisement

The history of biology

The origin of biology dates back to Greek philosophy, when the natural sciences were introduced. Hippocrates was the first to give a biological concept of life, and Aristotle is recognized as the first to classify animals. Aristotle was one of the greatest naturalists of ancient times and his greatest interest was living nature. He was the first great biologist of Europe and formulated the principle that all organisms are adapted to the environment in which they live. In addition, he stated that nature does not release energy unnecessarily, that is, it is parsimonious.

Aristotle, a biologist two thousand years ahead of his time: Some biological observations made by Aristotle took centuries to be confirmed by naturalists, especially those referring to the habits of aquatic animals. Aristotle pointed out that the male of the catfish guarded the eggs laid by the female until the fry were born. For a long time, Aristotle’s assertions, fruit of his observations, were considered to be fables.

 

The origin and evolution of Biology

Biology can be defined in a seemingly simple but precise way as the science that studies life. The historical discussion revolves around what life is.

The etymology of the word Biology is formed by the combination of the Greek terms: “bios” which means life and “logia” which means science.

The first samples of biology go back to the study of living beings and their vital manifestations from ancient times to our time. In this sense, the first classifications of living beings were made according to practical criteria considering usefulness and risk. It was not until the work of Linné (Carlos Linneo) saw the light, in the seventeenth century (Species Plantarum), when a “nature” classification was found.

Although the concept of Biology as a science was born in the 19th century, it studies all aspects or characteristics of living beings such as their chemical composition, reproduction, growth, metabolism, cellular organization and movement.

During the 18th and 19th centuries, biological sciences, such as botany and zoology, became scientific disciplines. It was during these centuries that Lavoisier and other physical scientists began to unite the animate and inanimate worlds through physics and chemistry. Explorer-naturalists, such as Alexander von Humboldt, expanded the fields of science by investigating the interaction between organisms and their environment, initiating biogeography, ethology, and ecology. Later, the cell theory provided a new appearance on the foundations of life.

Advertisement

 

The history of biology is divided into three major stages:

Ancient: theories and discoveries made from prehistory to the Middle Ages. In this sedentary stage of life, man began to observe phenomena of nature such as changes in seasons, tides, rainfall, all this attributed to the action of different gods; this way of explaining natural phenomena through religion and mythology lasted until the 6th century BC. Period in which several Greek philosophers called naturalists appeared, among them were Tales of Mileto, Anaximander, Pythagoras, Jenofanes of Colophon and Parmenides of Elea. Then the first documents of biology appeared, many of them attributed to Hippocrates and he is remembered for the Oath. Aristotle was considered the Father of Zoology; and Galen, last doctor of antiquity, as father of Anatomy.

Modern: With the Renaissance, this era of Biology began that lasted until just before the second decade of the 20th century. Here great biological changes were defined and some apparatuses and tools were invented that made research more optimal. Among the most important advances made in this stage is the invention of the microscope, with which biological structures that were not possible to see at first sight began to be observed.

Modern biology is based on several unifying themes, namely:

  • The Cell Theory.
  • The Theory of Evolution by Natural Selection of Darwin and Wallace.
  • Mendel’s Laws.
  • The Chromosomal Theory of Inheritance.
  • Crick’s Central Dogma on the flow of information.

This stage was also characterized by the use of an experimental work method and the attempt to relate cellular structures to their function. New fields of Biology emerged such as Microbiology and Genetics.

Advertisement

Within this period, some famous researchers stand out in the establishment of the importance of the cell as the fundamental anatomical unit of all living organisms. Among them are:

  • Robert Hooke: the first scientist to use the word “cell”.
  • Robert Brown: Established in 1831 that all cell types have a nucleus.
  • Matthias Schleiden and Theodor Schwann: In 1838, both biologists established that the cell was the fundamental anatomical and structural unit of all living beings. These would be two of the postulates of the Cell Theory.
  • Rudolf Virchow: Proposed the third postulate of the Cell Theory by ensuring in 1858 that the cell is the unit of origin.

Other important researchers of this time were Charles Darwin (theory of evolution); Louis Pasteur (founder of microbiology and creator of the rabies vaccine); Gregor Johann Mendel (Mendel’s laws) and Carlos Linneo (classification of organisms, system of nomenclature).

Molecular: This is the current moment, based on the basis of cellular constitution. Molecular life, which can be called biology of our time in a way, begins in 1920. The invention of the electron microscope, technological advances have made possible great achievements in the different fields of biology, highlighting in particular what has been achieved at the level of Genetic research.

At the beginning of the 20th century, the rediscovery of Mendel’s work led to the rapid development of genetics by Thomas Hunt Morgan and his students, the combination of population genetics and natural classification in modern evolutionary synthesis during 1930. New sciences developed rapidly, especially after James Watson (American biologist) and Francis Crick (British biologist) discovered the structure of DNA in 1953. At the end of the 20th century, new fields such as Genomics and Proteomics inverted this trend, with organic biologists using molecular techniques and investigating the interaction between genes and the environment.

 

Current

In the 21st century, biological sciences contributed as new and classic disciplines previously differentiated as physics in research fields such as biophysics. Advances were made in analytical chemistry and physical instrumentation, optical components, networks, satellites, and computing power for data collection, storage, visualization, and simulation. All of these technological advances allowed for the theoretical and experimental search for molecular biochemistry, biological systems, and ecosystem science. This made global entry possible for the improvement of measurements, complex simulations, analysis, observational content of data over the internet. New research fields in biological sciences emerged such as “bioinformatics” (application of computational technologies to the processing and observation of biological data). “Theoretical biology” (conceptual characterization of biological problems). “Computational genomics” (the use of computational analysis to interpret the biology of genome sequences). “Astrobiology” (combines biology and astronomy to study the origin, evolution, distribution, and future of life in the universe) and “Synthetic biology” (the synthesis of biomolecules, the belief that studies the chemical composition of living beings).

Advertisement

The current moment is that of biotechnology, genetic engineering, and genomics. Contributions from scientists, biochemists, physicists, and engineers are important within this stage, such as Max Perutz and John Kendrew, fundamental in the rapid development of structural biology; E. O. Wilson (biologist, father of biodiversity); Niels Kaj Jerne (immunologist, co-author with Frank Macfarlane Burnet of the clonal selection theory); Moto Kimura (author in 1968 of the neutralist theory of molecular evolution); Paul Berg (biochemist, obtained the first artificial DNA molecule, recombinant DNA, in 1972); Frederick Sanger (discoverer of the structure of insulin); Walter Gilbert (Nobel Prize in Chemistry for his studies on the structure and evolution of DNA sequences) and Carl Woese (creator of the new molecular taxonomy based on the comparison between species of the 16s and 18s mitochondrial RNA.

 

Some branches of Biology are:

  • Anatomy
  • Anthropology
  • Bacteriology
  • Biophysics
  • Marine biology
  • Biomedicine
  • Biochemistry
  • Biotechnology
  • Botany
  • Cytogenetics
  • Cytochemistry
  • Ecology
  • Entomology
  • Ethology
  • Evolution
  • Physiology
  • Genetics
  • Molecular genetics
  • Histology
  • Immunology
  • Microbiology
  • Parasitology
  • Paleontology
  • Taxonomy
  • Virology
  • Zoology
History-biography

Recent Posts

Peso Pluma

Peso Pluma Biography Hassan Emilio Kabande Laija (June 15, 1999), known artistically as Peso Pluma,…

3 months ago

Sebastián Piñera

Sebastián Piñera Biography Miguel Juan Sebastián Piñera Echenique (December 1, 1949 – February 6, 2024)…

3 months ago

Natanael Cano

Natanael Cano Biography Nathanahel Rubén Cano Monge (March 27, 2001), known artistically as Natanael Cano,…

3 months ago

Enzo Vogrincic

Enzo Vogrincic Biography Enzo Vogrincic Roldán (March 22, 1993) is an actor hailing from Montevideo,…

3 months ago

Xavi

Xavi Biography Joshua Xavier Gutiérrez Alonso (May 5, 2004), known by his stage name Xavi,…

3 months ago

Travis Kelce

Travis Kelce Biography Travis Michael Kelce (October 5, 1989) is an American football player born…

7 months ago
Advertisement

This website uses cookies.